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Abstract

Low-dimensional flow dynamical systems may converge to erroneous states after long-time integration, even if they

are initialized with the correct state. In this paper, we investigate the accuracy of such two-dimensional models con-

structed from Karhunen–Loeve expansions for flows past a circular cylinder. We first demonstrate that although the

short-term dynamics may be predicted accurately with only a handful of modes retained, drifting of the solution may

arise after a few hundred vortex shedding cycles. We then propose a dissipative model based on a spectral viscosity (SV)

diffusion convolution operator. The parameters of the SV model are selected rigorously based on bifurcation analysis.

Our results show that this is an effective way of improving the accuracy of long-term predictions of low-dimensional

Galerkin systems.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Proper orthogonal decomposition (POD) is a methodology that first identifies the few most energetic

modes in a time-dependent system, and second provides a means of obtaining a low-dimensional de-

scription of the system�s dynamics [1]. A particular effective approach is the method of snapshots, first

proposed in [2] for flow systems, that makes the method easy to implement in practice. POD has been

successfully implemented in conjunction with experimental (e.g., [3–7]) as well as with numerical studies

(e.g., [2,8–13]) in thermal convection, shear layers, cavity flows and external flows, to mention just a few.

In some of the aforementioned studies ad hoc viscosity models have been incorporated to produce

accurate simulations (e.g., [12] for cavity flows) while in others there was no explicit closure incorporated
(e.g., [8] for cylinder flows). In particular, as the number of modes increases above a certain threshold, the

POD-based model seems to be accurate at least for short-time integration. This assumes that the correct

initial conditions have been used, e.g., they are derived from corresponding direct numerical simulations.
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However, even in this case the POD model may diverge and will approach, after a long-time intergration,

another erroneous state. This switching of states is not an actual instability, in a sense of a catastrophic

change, but rather a gradual drifting from one state to another. In this paper, we will refer occasionally to
such drifting as an instability.

From the theoretical standpoint, it is well known that the system of ordinary differential equations

derived from the Galerkin projection of a dissipative PDE may be unstable for the long-term dynamics, see

[14]. A potential approach to restore dissipation back to the low-dimensional system is non-linear Galerkin

projection, which is based on concepts of approximate inertial manifolds, see ([15–17]). For fully discrete

systems, the non-linear Galerkin method has been shown to be stable for the long-term dynamics but some

sensitivity to initial data was also revealed, see [18]. In practice, this method works effectively as it was

shown recently in [19] using a low-dimensional system constructed from experimental (Particle Image
Velocimetry) data. However, we have encountered several other reduced flow model systems for which such

stabilization proved inadequate.

In this paper, we present an alternative closure strategy based on the spectral vanishing viscosity (SVV)

method. The work was first introduced in [20] in the context of constructing monotonicity preserving dis-

cretizations for hyperbolic conservation laws. More recently, it has been employed successfully in formu-

lating alternative large-eddy simulation (LES) approaches [21]. Also, in [22], the Legendre spectral

vanishing method was shown to effectively control the Gibb’s phenomenon, while in [23] the SVV approach

was employed in simulating two-dimensional waves in stratified atmosphere.
The spectral vanishing viscosity approach guarantees an essentially non-oscillatory behavior although

some small oscillations of bounded amplitude may be present in the solution. This theory is based on three

key components:

1. A vanishing viscosity amplitude which decreases with the mode number.

2. A viscosity-free spectrum for the lower, most energetic modes.

3. An appropriate viscosity kernel for the high-wave numbers.

SVV is especially suitable for hierarchical discretizations, such as ones obtained via the proper orthog-

onal decomposition, where global energetically-ordered modes are involved. This implies that SVV pre-
serves the inherent energetic scale separation while it also maintains monotonicity of the total variation

bounded (TVB) kind by controlling the high-frequency components. This effective regularization is de-

termined by parameters whose range is guided by the theory for advection-dominated systems. More recent

work has extended the method to superviscosity formulations, first by Tadmor [24] and later by Ma [25,26],

in order to extend the range of the viscosity-free spectrum.

In the following, we first demonstrate a few cases where instabilities (i.e., solution drifts) arise. Subse-

quently, we introduce the SVV method and modify its amplitude in order to make the method effective for

POD systems. In particular, we develop a new procedure in selecting rigorously the free parameters that
guarantee accurate asymptotic states of the low-dimensional system.
2. Mathematical formulation

2.1. Direct numerical simulation

We consider here flow past a circular cylinder for which both two- and three-dimensional POD models
have been constructed in [8] and [27], respectively. With initial conditions obtained from corresponding

direct numerical simulations, these models were shown to be accurate for tens and even hundreds of

shedding cycles without incorporating any closure model. Here, we will re-examine the accuracy of

the POD predictions for these flows. In particular, for the concepts developed here, we consider two-

dimensional uniform flow past a circular cylinder at Reynolds number Re ¼ 100 and Re ¼ 500.
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The computational domain is shown in Fig. 1. Uniform steady or time-dependent boundary conditions

are imposed at the inflow boundary C1. Uniform velocity is also imposed on C3 and C4 while on C2 the

zero Neumann condition on velocity is imposed. On the cylinder surface C5 the no-slip boundary condi-
tion is prescribed. Converged solutions were obtained using the spectral/hp element method [28]. Typical

results that show the differences in spatial scales in terms of vorticity at Re ¼ 100 and Re ¼ 500 are shown in

Fig. 2.

2.2. POD models

We employed 50 snapshots of DNS data in order to construct low-dimensional models using the proper

orthogonal decomposition. We briefly review this procedure next.

Let us decompose the total flow field V as

Vðx; tÞ ¼ U0ðxÞ þ uðx; tÞ;

where U0 is the time-averaged field.
Then, we extract the POD modes, based on the DNS data, which are eigenvectors of a covariance matrix

C; its elements are computed as follows

ci;j ¼
Z

uðx; tiÞ � uðx; tjÞdx ¼
Z Z

uðx; y; tiÞuðx; y; tjÞ
�

þ vðx; y; tiÞvðx; y; tjÞ
�
dxdy;

where u, v are the two components of the velocity vector u. This is the snapshot method formulation. The

matrix C represents the correlation between temporal points since the spatial variable has been integrated

out. We then compute the eigenvectors of the above covariance matrix, denoted by a, and the POD modes

denoted by /ðx; yÞ. Specifically, the vector /ðx; yÞ is given by

/uðx; yÞj ¼
XN
i¼1

ajðtiÞuðx; y; tiÞ;
Fig. 1. Computational domain.



Fig. 2. Instantaneous vorticity contours at Re ¼ 100 (upper) and Re ¼ 500 (lower).
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/vðx; yÞj ¼
XN
i¼1

ajðtiÞvðx; y; tiÞ;

where N is the total number of snapshots, /u and /v are the components of the vector /ðx; yÞ, and j is the
mode index. The corresponding energy distribution of POD modes is plotted in Fig. 3 for Re ¼ 100 and

Re ¼ 500.
We employ the hierarchical POD modes obtained from the DNS data as a basis to represent the velocity

field. In addition, we employ a Galerkin projection of the Navier–Stokes equations onto spatial modes to

obtain the system of ordinary differential equation that governs the dynamics of the system.

We express the two-dimensional field u as the linear combination of the POD modes

uðx; y; tÞ ¼
XN
j¼1

/uðx; yÞjajðtÞ;

vðx; y; tÞ ¼
XN
j¼1

/vðx; yÞjajðtÞ;

where ajðtÞ are the unknown coefficients. The Galerkin projection of the Navier–Stokes equations givesZ
/ � oV

ot

�
þ ðV � rÞVþrp � 1

Re
r2V

�
dx ¼ 0; ð1Þ
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Fig. 3. Energy distribution of POD modes for Re ¼ 100 (+) and Re ¼ 500 (�).
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where the projection vector is / ¼ ½/u;/v�
T
, extracted from DNS. We use the divergence-free eigenmodes so

the pressure term inside the domain is eliminated via integration by parts. Also the Dirichlet and the

outflow conditions imposed at the boundaries lead to the vanishing of contributions from the pressure on

those boundaries in the integration by parts procedure.

A Galerkin projection leads to the dynamical system:

oajðtÞ
ot

¼ fjðaÞ ð2Þ

with a ¼ ½a1; a2; . . .�. The term fjðaÞ includes the convective and viscous terms and has the form:

fjðaÞ ¼ �
Z

/jr � ð/i/kÞdx
� �

aiak �
1

Re

Z
r/jr/i dx

�
þ
Z

/jr � ð/iU0Þdx

þ
Z

/jr � ðU0/iÞdx
�
ai �

Z
/jr � ðU0U0Þdx

�
þ 1

Re

Z
r/jrU0 dx

�
:

In the following we investigate the time evolution of the modal coefficients ajðtÞ; j ¼ 1; 2; . . . ;N :
3. Accuracy of POD flow models

First, we present results from the long-time integration of the Re ¼ 100 case with steady uniform inflow.

The magnitudes of first two most energetic modes from the DNS are presented in Table 1. It was found in

[8] that a 6-mode POD system (initialized with DNS data) gives accurate results in comparison with DNS

data, at least for the short-time dynamics. Indeed, various reduced models we tested again with N P 6 are

accurate after short-time integration. This is demonstrated in Table 2, where the magnitudes of the first two

modes are presented. This accuracy is maintained for times up to several hundreds of shedding cycles. Also,



Table 1

Oscillation period and the first two most energetic modes from DNS

Re ¼ 100 Re ¼ 500

Magnitudes Period Magnitudes Period

�a1 ¼ 2:656 T ¼ 5:89 �a1 ¼ 4:192 T ¼ 4:385

�a2 ¼ 2:653 �a2 ¼ 4:277

Table 2

Magnitudes of the first two most energetic modes from POD simulations for Re ¼ 100

N Energy captured (%) Short-term dynamics Long-term dynamics

�a1 �a2 �a1 �a2

6 99.9269 2.6524 2.6532 2.158 2.155

10 99.9975 2.6558 2.6533 16.523 16.667

20 100 2.6560 2.6534 16.506 16.615
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by comparing the values in Tables 1 and 2 we see that the more POD modes included in the POD model the

more accurate is the prediction of the short-term dynamics.

Our experiments, however, show that all models converge asymptotically to a different attractor. This is
consistent with the findings of Aubry et al. [29] for the Kuramoto–Sivashinsky equation (KSE). They

observed that even with a POD model that captures more than 99.99% of energy the predicted solution

does not converge to the right attractor. In flow past a cylinder, a 6-mode system (initialized with the DNS

data) is accurate for up to 40 shedding cycles (about 200 convective time units) as shown in Fig. 4 but it

diverges to a different attractor for time t > 200. As the number of modes increases the accuracy of the

model is enhanced. Thus, a 10-mode system is accurate for up to 500 shedding cycles, i.e., more than 3000
Fig. 4. Re ¼ 100. Envelopes of the time history showing the onset of divergence in the 6-mode POD system. The oscillation corre-

sponds to period T ¼ 5:88.
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convective time units, but eventually all modes show drifting as shown in Fig. 5. However, for the first 50

shedding cycles the POD predictions are in very good agreement with the DNS data as shown in Fig. 6.

This long-term inaccurate prediction occurs even though the POD models capture almost 100% of the
energy for large N (see Table 2). In contrast, the results for KSE by [29] show that with the addition of one

extra mode the correct asymptotic dynamics is predicted.

The exact onset of divergence from the correct limit cycle depends on the number N of modes retained in

the reduced model. For the results presented in Table 2, we have integrated up to 1000 shedding cycles both

models with N ¼ 6 and N ¼ 10 achieving asymptotic states. However, the model with N ¼ 20 is still in the

transient state with �a1 ¼ 2:8150 and �a2 ¼ 2:8124 after 1000 shedding cycles. The asymptotic values of the

magnitudes of the N ¼ 20 model are shown in Table 2(right); they were obtained after integration for at

least 3000 shedding cycles.
The divergence from the correct limit cycle of the POD model also depends on the Reynolds number. At

the higher Reynolds number (Re ¼ 500) the onset of divergence arises earlier even for a higher-order model.

For example, in Fig. 7 we show the time history of the modes for a 20-mode POD model. The divergence

here sets in at about 100 shedding cycles into the time integration. This result is typical of several other

models we constructed for the uniform steady inflow.

However, not all low-dimensional systems have erroneous long-term behavior. Our experiments show

that non-autonomous systems, i.e., systems with an imposed time scale through external forcing, may be
Fig. 5. Re ¼ 100. Envelopes of the time history showing the onset of divergence in the 10-mode POD system. The oscillation cor-

responds to period T ¼ 5:84.



Fig. 6. Re ¼ 100. Phase portrait during the first 50 shedding cycles for the 10-mode system. The lines denote POD predictions and the

triangles correspond to DNS data.
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asymptotically accurate at all times. To this end, we consider the flow past a cylinder again at Re ¼ 500 but
with a small sinusoidal velocity component added at the inflow, with 10% amplitude forced at the Strouhal

frequency. The resulting POD system predicts the expected lock-in state, in agreement with DNS, and it is

asymptotically accurate even for N ¼ 12, see Fig. 8 and also [30] for more details. The time history shows

that the accuracy of the POD prediction is maintained for all times. The Galerkin model in the unsteady

inflow case is based on a modification of the system of Eq. (2) to include a penalty term that facilitates the

time-dependent boundary conditions in the reduced POD system.
4. The spectral vanishing viscosity model

Tadmor [20] first introduced the concept of spectral vanishing viscosity (SVV) using the inviscid Burgers�
equation. The distinct feature of solutions to this problem is that spontaneous jump discontinuities (shock

waves) may be developed, and hence a class of weak solutions can be admitted. Within this class, there are

many possible solutions, and in order to single out the physically relevant one an additional entropy

condition is applied.

In low-dimensional systems it has been found that unstable behavior is associated with multiple spurious
steady states [14], and this is consistent with the above observation. Tadmor [20] introduced the spectral



Fig. 7. Re ¼ 500; steady inflow. Envelopes of the time history showing the onset of divergence in the 20-mode POD model. The os-

cillation corresponds to period T ¼ 4:332.
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vanishing viscosity method, which adds a small amount of mode-dependent dissipation that satisfies the

entropy condition, yet retains spectral accuracy. It is based on viscosity solutions of non-linear Hamilton–

Jacobi equations, which have been studied systematically in [31]. Specifically, the viscosity solution for the

Burgers� equation has the form

o

ot
uðx; tÞ þ o

ox
u2ðx; tÞ

2

� �
¼ �

o

ox
Q�

ou
ox

� �
; ð3Þ

where �ð! 0Þ is a viscosity amplitude and Q� is a viscosity kernel. Convergence may then be established by

compactness estimates combined with entropy dissipation arguments [20]. To respect spectral accuracy, the
SVV method makes use of viscous regularization, and Eq. (3) may be rewritten in discrete form (retaining N
modes) as in our POD model

o

ot
uN ðx; tÞ þ

o

ox
PN

u2ðx; tÞ
2

� �� �
¼ �

o

ox
QN � ouN

ox

� �
; ð4Þ

where the star ð�Þ denotes convolution and PN is a projection operator. QN is a viscosity kernel, which is

only activated for high-wave numbers. In Fourier space, this kind of spectral viscosity can be efficiently

implemented as multiplication of the Fourier coefficients of uN with the Fourier coefficients of the kernel

QN , i.e.,



Fig. 8. Re ¼ 500; oscillatory inflow. Envelopes of the time history showing asymptotic stability for the 12-mode POD model. The

oscillation corresponds to period T ¼ 4:545.
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�
o

ox
QN � ouN

ox

� �
¼ ��

X
M 6 jkj6N

k2Q̂kðtÞûkðtÞeikx;

where k is the wave number, N the number of Fourier modes, and M the wavenumber above which the

spectral vanishing viscosity is activated. In the POD context, we also assume that this implementation of

convolution is valid in the modal space.

Originally, Tadmor [20] used

Q̂k ¼
0; jkj6M ;
1; jkj > M ;

�
ð5Þ

with �M � 0:25 based on the consideration of minimizing the total-variation of the numerical solution. In

subsequent work, however, a smooth kernel was used, since it was found that the C1 smoothness of Q̂k

improves the resolution of the SVV method. For Legendre pseudo-spectral methods, Maday et al. [32] used

� � N�1, activated for modes k > M � 5
ffiffiffiffi
N

p
, with

Q̂k ¼ e�ðk�NÞ2=ðk�MÞ2 ; k > M : ð6Þ

In order to see the difference between the convolution operator on the right-hand-side in Eq. (4) and the

usual viscosity regularization, following Tadmor [33], we expand as
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�
o

ox
QN � ouN

ox

� �
¼ �

o2uN
ox2

� �
o

ox
RNðx; tÞ � ouN

ox

� �
; ð7Þ

where

RN ðx; tÞ �
XN
k¼�N

R̂kðtÞeikx; R̂kðtÞ � 1� Q̂kðtÞ; jkjPM ;
1; jkj < M :

�
ð8Þ

The extra term appearing in addition to the first standard viscosity term makes this method different. It

measures the distance between the spectral viscosity and the standard viscosity. This term is bounded in the

L2 norm similarly to the spectral projection error. Tadmor refers to the viscosity as vanishing as his theory

requires that

� � 1

N h logN
; h6 1

and thus � ! 0 for the high-resolution limit. However, in severely truncated expansions this may not be

true, so in the current work we will leave � a free parameter to be determined.

The implementation of the SVV in the POD models (Eq. (2)) is similar to the implementation of Fourier

methods presented above or the spectral/hp element discretization in [21]. In particular, the system of or-
dinary differential equations is enhanced as follows

oaj

ot
¼ fjðaÞ � hjðaÞ; ð9Þ

where fjðaÞ has the form presented in Eq. (3), and hjðaÞ contains the viscosity convolution kernel, i.e.,

hjðaÞ ¼ �Q̂j

Z
oU0

ox

o/j

ox
dx

"
þ
XN
i¼1

aiðtÞ
Z

o/i

ox

o/j

ox
dx

#
: ð10Þ

In this derivation, integration by parts is used and the fact that boundary contributions vanish because of

the specific boundary conditions employed. In view of Eq. (10), we can see that only the higher modes, i.e.,

mode numbers greater than M , will be affected by the viscosity kernel.

We also introduce a small modificaton to the SVV model by setting � ¼ a=N and including a free pa-

rameter a in Eq. (8), as follows:

a
N

o

ox
QN � ouN

ox

� �
¼ a

N
o2uN
ox2

� a
N

o

ox
RNðx; tÞ � ouN

ox

� �
; ð11Þ

where

RN ðx; tÞ �
XN
k¼�N

R̂kðtÞeikx; R̂kðtÞ � a� Q̂kðtÞ; jkjPM ;
a; jkj < M :

�
ð12Þ

We will refer to the above model as ‘‘parameterized spectral viscosity’’ model (or parameterized SV)

since we will allow for diffusion kernels with non-vanishing viscosity amplitude. We also introduce the term
‘‘standard spectral viscosity’’ model (or standard SV). This also corresponds to non-vanishing viscosity,

and thus it is different from the SVV model given in Eqs. (7) and (8).
5. Accuracy of SV-POD flow models

Here, we demonstrate the effect of SV by revisiting the flow examples already presented in Section 2 for

cylinder flow. For the comparisons that follow we will need the amplitudes of the first two most energetic
modes at Re ¼ 100 and Re ¼ 500. In Table 1 we present those results along with the Strouhal period T . In
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the following, we first consider the case where the SV parameters are chosen empirically. Subsequently, we

present a new procedure to obtain the SV parameters more rigorously using bifurcation analysis.

5.1. Empirical SV model

The parameters of the SV model were chosen guided by the general theoretical estimates and also by
obtaining the best agreement with the original data for the first 50 shedding cycles. Specifically, we have

investigated the accuracy of the low-dimensional POD systems at Re ¼ 100 and Re ¼ 500 at different values

of the wave cut-off parameter M and the best value for � according to the above criterion. The detailed

results can be found in [30].

Here we only present results for the higher Reynolds number Re ¼ 500 for which the 20-mode POD

Galerkin system ðN ¼ 20Þ diverges at earlier times. The standard SV model can effectively maintain the

accuracy in the simulation. In Fig. 9 we plot the phase portrait of the first nine modes for the first 1000

shedding cycles in the simulation. We see that a limit cycle is predicted in excellent agreement with the DNS
data. To appreciate the effect of SV in the current simulation we also present in Fig. 10 the corresponding

results without SV from the pure POD Galerkin system for the same time period, which clearly diverges. In

this case the cut-off mode was set to M ¼ 16 and the viscosity kernel � ¼ a=N was chosen to be

� ¼ 0:0320520703. Using a standard artificial viscosity approach, the POD Galerkin model does not lead to

accurate results; in this particular case we could not obtain accurate results within the first 1000 shedding

cycles.
Fig. 9. Re ¼ 500. Phase portrait of the first 9 modes versus the first mode in the 20-mode SV-POD system (lines) compared to the DNS

data (symbols). Time integration over 1000 shedding cycles.



Fig. 10. Re ¼ 500. Phase portrait of the first 9 modes versus the first mode in the 20-mode POD only system (lines) compared to the

DNS data (symbols). Time integration over 1000 shedding cycles.
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In order to also investigate the effect of SV on the higher modes we plot separately in Figs. 11 and 12 the

phase portraits up to the 17th and 20th mode, respectively. We see that after the cut-off mode M ¼ 16 some

inaccuracies are introduced, which are more pronounced in the modes 18, 19 and 20. However, the amplitude

of those modes is bounded in contrast to the high POD modes of the reduced system without any SV.

Despite the improved results of the SV-POD system constructed following the aforementioned empirical

approach, its asymptotic accuracy is still questionable. Indeed, performing much longer simulations for the
case we presented above we observed a divergence and eventual development of another limit cycle after

integrating several thousands of shedding cycles. To address this issue we employ bifurcation analysis,

based on which we can choose the appropriate values for the parameters of the SV model. This is presented

in the next section.
5.2. Asymptotically accurate SV model

In order to find the proper value of the viscosity coefficient in the SV model we employ bifurcation

analysis using the code AUTO, (see [34]). Specifically, we are interested in determining first if the low-

dimensional system we consider exhibits a Hopf bifurcation point or if we can obtain a stable periodic

solution even if it is inaccurate. Based on either of these states, we can then track the corresponding periodic
branch. The key idea is to perform the bifurcation analysis with respect to a, i.e., the coefficient that de-

termines the viscosity amplitude � ¼ a=N .



Fig. 11. Re ¼ 500. Phase portrait of modes 10–17 versus the first mode in the 20-mode SV-POD system (lines) compared to the DNS

data (symbols). Time integration over 1000 shedding cycles.
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First, we examined the accuracy of the original 6-mode POD system corresponding to a ¼ 0, i.e., no SV
model is incorporated. In Table 3 we summarize the results for Re ¼ 100 and Re ¼ 500. The magnitudes of

Floquet multipliers are less than unity (except the first one which is unity), therefore the periodic solution of

the original POD system is asymptotically stable. However, its asymptotic limit cycle is different than the

one that DNS predicts. For Re ¼ 500 the asymptotic state is characterized by a period T ¼ 4:33, which is

close to the DNS result ðTDNS ¼ 4:385Þ. However, the amplitudes of the first two modes are very different

from the amplitudes of the modes corresponding to DNS, the latter having the values �a1 ¼ 4:192 and
�a2 ¼ 4:277. Therefore, solving the initial value problem with no SV incorporated leads to a solution which

is different than the correct limit cycle as predicted by DNS. For Re ¼ 100 the situation is similar although
the difference in modal amplitudes is smaller and thus it will take much longer for the POD simulation to

reach the asymptotic state.

Next, we performed bifurcation analysis on the 6-mode POD system using the standard SV model at

different values of the cut-off mode M . However, we could not find any Hopf bifurcation points for such

systems (as we increase a to 107) except for the case M ¼ 0. To this end, we then modified slightly the low-

dimensional system by incorporating the parameterized SV model setting a ¼ 0:999 instead of its standard

value a ¼ 1 in the original model [20]. For different values of the cut-off mode M of the parameterized SV

model, we were able to find the Hopf bifurcation point; we then tracked the periodic branch back to the
original POD system corresponding to a ¼ 0.



Fig. 12. Re ¼ 500. Phase portrait of modes 18–20 versus the first mode in the 20-mode SV-POD system (lines) compared to the DNS

data (symbols). Time integration over 1000 shedding cycles.

Table 3

Parameters for the asymptotically stable periodic solution of the original 6-mode POD system (a ¼ 0)

Re ¼ 100 Re ¼ 500

Period Magnitudes Multipliers Period Magnitudes Multipliers

T ¼ 5:88 �a1 ¼ 2:157 9.528E) 01 T ¼ 4:33 �a1 ¼ 2:380 9.447E) 01

�a2 ¼ 2:155 5.802E) 01 �a2 ¼ 2:493 )8.035E) 01) 2.470E) 01i

5.635E) 01 )8.035E) 01+ 2.470E) 01i

)5.070E) 01) 1.690E) 01i 7.075E) 01+ 3.858E) 01i

)5.070E) 01+ 1.690E) 01i 7.075E) 01) 3.858E) 01i

Shown are the first two most energetic modes and the non-trivial Floquet multipliers.
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Having obtained the periodic branch does not necessarily lead to a unique choice for the bifurcation

parameters. Therefore, other criteria need to be invoked. Here we choose to match the amplitude �a1 of the
first mode with the DNS results, and this will lead to at most two possible solutions. Enforcing the

Strouhal period to be the same in the DNS and in the bifurcation analysis yields a unique set of SV

parameters. In the particular flow that we study here, the POD modes form approximate pairs and thus

the second mode will match the DNS results as well. Thus, the two most energetic modes match with the

DNS-based results.
First we present results for the parameterized SV model. All the calculations have been done using

the maximum accuracy available for AUTO. Typical bifurcation diagrams for Re ¼ 100 are shown in

Fig. 13 for cut-off modes M ¼ 2 (left) and M ¼ 4 (right). Similar plots are shown in Fig. 14 for

Re ¼ 500. In particular, we can follow the aforementioned selection process of SV parameters given the

DNS value for �a1 to be 2:656 and 4:192 for Re ¼ 100 and 500, respectively. In Table 4 we list the best

values of the viscosity coefficient a that determines the viscosity amplitude � ¼ a=N in the parameterized

SV model.



Fig. 13. Bifurcation diagrams for the 6-mode parameterized SV-POD system at Re ¼ 100. Left: M ¼ 2 and Right: M ¼ 4. The circle

denotes the Hopf bifurcation point; on its left is the unstable region (dashed line) and on its right is the stable region (thin line).

Fig. 14. Bifurcation diagrams for the 6-mode parameterized SV-POD system at Re ¼ 500. Left: M ¼ 2 and Right: M ¼ 4. The circle

denotes the Hopf bifurcation point; on its left is the unstable region (dashed line) and on its right is the stable region (thin line).
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Once the best value of the viscosity coefficient is obtained, simulations are performed to confirm the

results of the bifurcation analysis. In Figs. 15 (upper) and 16 (upper) we plot the results of the POD

simulation at Re ¼ 100 and 500, respectively, using the parameterized SV model for the 6-mode system.
Long-time integration confirms the accuracy of the system consistent with the bifurcation analysis. From

these plots we can also see that the Re ¼ 100 case is simulated very accurately including the high modes

unlike the higher Reynolds number case. For the latter, good agreement is achieved only for the first two

modes whereas the higher modes appear overly damped.

We now turn our attention to the case that no Hopf bifurcation point can be found via the bifurcation

analysis, as is the case for the standard SV-POD system for which only the cut-off M ¼ 0 at Re ¼ 100

exhibits a bifurcation point. It turns out that in this case too we can select rigorously the viscosity amplitude

a. To this end, we can take advantage of the fact that for a ¼ 0 we have an asymptotically stable periodic



Table 4

Best viscosity coefficient a at different cut-off modes M for the 6-mode parameterized SV-POD system

Re Cut-off (M) Coefficient ða1Þ Period ðT1Þ Coefficient ða2Þ Period ðT2Þ

100 0 4.833E) 02 5.877 3.060E) 01 5.871

100 2 5.562E) 02 5.877 7.096 5.872

100 4 9.644E) 02 5.874 3.639 5.870

500 0 N/A N/A N/A N/A

500 2 8.999E) 01 4.3466 2.598E+01 4.3451

500 4 1.788 4.3484 1.996E+01 4.3454
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solution albeit an erroneous one. However, we can perform the bifurcation analysis forward for aP 0

starting from the zero point. Figs. 17 and 18 show the corresponding bifurcation diagram for the standard

SV model for cut-off M ¼ 2 and 4 at the two Reynolds number Re ¼ 100 and Re ¼ 500, respectively. Here

too we use the same criteria for selection as before, namely matching of the first and second modal am-

plitudes and also of the Strouhal period derived from the DNS results.

A summary of the results of the bifurcation analysis is presented in Table 5. Here ‘‘N/A’’ implies that

there is no intersection of the first modal amplitude and the periodic branch and thus a matching as-
ymptotically stable periodic solution cannot be found for M ¼ 0 at Re ¼ 500. The viscosity coefficients

from the bifurcation analysis are then used in the POD simulation to obtain the time periodic solutions.

The results, plotted in terms of phase portraits, are shown in Figs. 15 (lower) and 16 (lower). All solutions

are stable after long time integration consistent with the values of the associated non-trivial Floquet

multipliers, which are listed in Table 6.

5.3. Higher resolution SV-POD systems

Next, we study the previous two cases using higher resolution corresponding to a 10-mode POD system

for Re ¼ 100 and to a 12-mode POD system for Re ¼ 500.

First, we analyze the accuracy of the POD systems without including the SV contribution. In Table 7 we

present a summary of the results for both Reynolds numbers. We see that in both cases there exist periodic

asymptotic states, which are stable since the magnitudes of all Floquet multipliers (after the first one) are

below unity. However, these asymptotic states are different from the correct ones that DNS predicts.

We now study the behavior of the parameterized SV-POD system. A summary of the bifurcation
analysis results is presented in Table 8. Typical bifurcation diagrams for the cut-off mode M ¼ 0 are shown

in Fig. 19. The bifurcation analysis reveals that as we vary the viscosity coefficient the parameterized SV-

POD always gives a Hopf bifurcation point, thus allowing us to track the periodic solution branch.

However, for Re ¼ 100 only at cut-off modes M ¼ 0 and M ¼ 2 we obtained accurately matching as-

ymptotically stable periodic solutions. For Re ¼ 500 the only accurate solution is at M ¼ 0.

We now turn our attention to the standard SV-POD model for which no Hopf bifurcation points were

found. As before, we track the periodic branch forward from a ¼ 0 for which there exist stable periodic

states although inaccurate. From the bifurcation analysis, it is found that for the standard SV-POD system
a matching asymptotically stable solution can be obtained for cut-off mode M ¼ 0, 2 and 4. However, with

cut-off mode fromM ¼ 6 to 8 (and correspondinglyM ¼ 4 to 10 at Re ¼ 500), the standard SV-POD model

cannot provide a matching stable periodic solution. These results are summarized in Table 9 and typical

bifurcation diagrams forM ¼ 0 are presented in Fig. 20. The accuracy of the model improves somewhat but

not dramatically. In particular, for the Re ¼ 500 the high modes improve only slightly over the results

presented in Fig. 16. We will discuss this issue further in the next section.



Fig. 15. Re ¼ 100. Phase portrait obtained from a simulation based on the 6-mode SV-POD system employing the best value of the

viscosity coefficient a and cut-off M ¼ 2. Upper: parameterized SV. Lower: standard SV.
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We have shown that the long-term prediction of both lower and higher resolution are improved as we

use either the parameterized SV or the standard SV with the most effective viscosity coefficient. The

question now is if the short-term prediction of these models is affected. In Table 10, we present results that



Fig. 16. Re ¼ 500. Phase portrait obtained from a simulation based on the 6-mode SV-POD system employing the best value of the

viscosity coefficient a and cut-off M ¼ 2. Upper: parameterized SV. Lower: standard SV.
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show that the accuracy of the prediction of short-term dynamics with the new models is somewhat worse.

This comparison assumes that we initialize both types of models with the correct DNS data. If random

initial data are selected, the standard POD model will fail to predict either the short-term or the long-term

dynamics.



Fig. 18. Bifurcation diagrams for the 6-mode standard SV-POD system at Re ¼ 500. Left: M ¼ 2 and Right: M ¼ 4.

Fig. 17. Bifurcation diagrams for the 6-mode standard SV-POD system at Re ¼ 100. Left: M ¼ 2 and Right: M ¼ 4.

Table 5

Best viscosity coefficient at different cut-off mode M for the 6-mode standard SV-POD model

Re Cut-off (M) Coefficient ðaÞ Period (T )

100 0 2.807E) 02 5.877

100 2 4.630E) 02 5.878

100 4 7.626E) 02 5.876

500 0 N/A N/A

500 2 8.394E) 01 4.346

500 4 1.578 4.3487
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Table 7

Asymptotically stable periodic solution of the original POD system for the 10-mode system at Re ¼ 100 and the 12-mode system at

Re ¼ 500

Re ¼ 100 Re ¼ 500

Period Magnitudes Multipliers Period Magnitudes Multipliers

T ¼ 5:84 �a1 ¼ 16:52 7.788E) 01 T ¼ 4:33 �a1 ¼ 2:29 9.492E) 01

�a2 ¼ 16:67 2.023E) 01 �a2 ¼ 2:41 6.426E) 01) 4.580E) 01i

1.902E) 01 6.426E) 01+ 4.580E) 01i

2.931E) 01) 4.818E) 01i )7.560E) 01) 2.142E) 01i

2.931E) 01+ 4.818E) 01i )7.560E) 01+ 2.142E) 01i

)1.112E) 01) 3.189E) 01i )4.918E) 01+ 3.165E) 01i

)1.112E) 01+ 3.189E) 01i )4.918E) 01) 3.165E) 01i

)2.291E) 02) 1.528E) 01i )5.332E) 01+ 8.302E) 02i

)2.291E) 02 1.528E) 01i )5.332E) 01) 8.302E) 02i

5.246E) 01+ 6.266E) 03i

5.246E) 01) 6.266E) 03i

Shown are the first two most energetic modal amplitudes and non-trivial Floquet multipliers.

Table 8

Best viscosity coefficient for the high-resolution parameterized SV-POD model

Re Cut-off (M) Coefficient ða1Þ Period ðT1Þ Coefficient ða2Þ Period ðT2Þ

100 0 5.377E) 02 5.885 3.460 5.866

100 2 3.302E) 01 5.877 5.122 5.853

100 4 N/A N/A N/A N/A

100 6 N/A N/A N/A N/A

100 8 N/A N/A N/A N/A

500 0 1.226E+01 4.347 2.974E+01 4.346

500 2 N/A N/A N/A N/A

500 4 N/A N/A N/A N/A

500 6 N/A N/A N/A N/A

500 8 N/A N/A N/A N/A

500 10 N/A N/A N/A N/A

Table 6

Floquet multipliers for the solutions presented in Figs. 15 and 16 (lower plots)

Re ¼ 100 Re ¼ 500

Parameterized SV Standard SV Parameterized SV Standard SV

9.788E) 01 9.790E) 01 9.869E) 01 9.864E) 01

3.621E) 01+ 7.606E) 02i 3.898E) 01+ 7.636E) 02i )5.655E) 03+ 1.375E) 02i )6.122E) 03) 1.721E) 02i

3.621E) 01) 7.606E) 02i 3.898E) 01) 7.636E) 02i )5.655E) 03) 1.375E) 02i )6.122E) 03+ 1.721E) 02i

)3.266E) 01+ 1.485E) 02i )3.544E) 01+ 2.402E) 02i )8.973E) 09) 1.215E) 08i )3.144E) 08) 4.321E) 08i

)3.266E) 01) 1.485E) 02i )3.544E) 01) 2.402E) 02i )8.973E) 09+ 1.215E) 08i )3.144E) 08+ 4.321E) 08i
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6. Summary and discussion

We have developed a spectral viscosity (SV) method that improves significantly the accuracy of long-

term predictions of reduced order models derived from Galerkin projections of evolution equations.
Specifically, here we have considered the external flow past a cylinder and investigated the accuracy of the



Fig. 19. Bifurcation diagrams for the high-resolution parameterized SV-POD systems at M ¼ 0. Left: Re ¼ 100. Right: Re ¼ 500. The

circle denotes the Hopf bifurcation point; on its left is the unstable region (dashed line) and on its right is the stable region (thin line).

Table 9

Best viscosity coefficient for the high-resolution standard SV-POD model

Re Cut-off (M) Coefficient ðaÞ Period (T )

100 0 6.598E) 02 5.885

100 2 2.485E) 01 5.880

100 4 1.029 5.875

100 6 N/A N/A

100 8 N/A N/A

500 0 8.195 4.3483

500 2 1.856E+02 4.349

500 4 N/A N/A

500 6 N/A N/A

500 8 N/A N/A

500 10 N/A N/A

Fig. 20. Bifurcation diagrams for the high-resolution standard SV-POD systems at M ¼ 0. Left: Re ¼ 100. Right: Re ¼ 500.
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Table 10

Comparison of the time-averaged error for the first four energetic modes for a short-time simulation of POD, parameterized SV-POD

and standard SV-POD (Re¼ 100 and N ¼ 6)

L2 Error POD (T ¼ 5:88) Standard SV (T ¼ 5:877) Parameterized SV (T ¼ 5:877)

�a1 0.001673 0.002069 0.002603

�a2 0.001869 0.001874 0.002225

�a3 0.005664 0.01513 0.01338

�a4 0.006879 0.01844 0.01742
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limit cycle obtained from a POD-based Galerkin system at two values of Reynolds number. We have found

that after very long time integration, all Galerkin models we tested converged to erroneous states, even

though they were initialized with the correct state. However, in previous similar studies, where short to

modest length time integration was involved, it was shown that such models predict the correct dynamics

but it was incorrectly assumed that are asymptotically accurate. The present simulations show that even

though the correct dynamics may be predicted for hundreds of shedding cycles (initializing with the correct

conditions) eventually a divergence arises. It does not manifest itself as an explosive growth that leads to
blow-up but rather as a drift leading to another spurious limit cycle. The precise onset of this divergence

depends on the number of modes retained in the model and the Reynolds number as well as the flow

geometry.

To this end, we have introduced a modification to the spectral vanishing viscosity (SVV), which has been

shown to be effective in preserving monotonicity in hyperbolic conservation laws [20]. SVV is represented

by a convolution viscosity kernel, which is parameterized by a viscosity amplitude � ¼ a=N (where N is the

number of retained modes) and a cut-off mode M < N . The proper choice of these parameters would

guarantee stability without influencing the convergence rate of the POD expansion adversely. However,
their exact values are not known a priori and they depend on the flow geometry as well as the retained

number of POD modes N . In the original SVV the viscosity amplitude is vanishing as the number of modes

increases, however in this work we find that this is inappropriate for severely truncated systems.

The new contribution of this work is the use of bifurcation analysis to choose the SV parameters in order

to guarantee asymptotic stability. Specifically, the stability of SV-POD systems has been analyzed with

respect to the viscosity coefficient a as bifurcation parameter. Parametric studies with respect to the cut-off

mode M yield the most effective pair ða;MÞ that fully characterizes the SV model. In particular, we con-

structed bifurcation diagrams for the standard SV model starting from the point � ¼ a ¼ 0, which belongs
to a periodic branch, and searching forward for a > 0. This procedure produces a stable periodic branch for

each of the SV-POD models tested. An alternative method we developed is to perturb slightly the SV model

to exhibit a Hopf bifurcation point unlike the standard SV model that does not exhibit such points.

Subsequently, we follow that bifurcation point to track the periodic branch with respect to a as before.

There are infinitely many candidate states on the stable periodic branch, and selection of the proper state

is a matter of careful modeling of the flow system that we study. For the flow past a cylinder that we

consider here, its POD eigenspectrum decays very fast (see Fig. 3) and thus the first couple of modes

dominate the dynamics. To this end, we have used the amplitude of the first mode to intersect its periodic
branch in the corresponding bifurcation diagram, thus obtaining a definitive value of the viscosity am-

plitude in the SV model. Due to the approximately traveling-wave form of the vortex street, the eigenvalues

form pairs and thus the second eigenmode matches as well. For fast decaying eigenspectra the rest of the

eigenmodes agree with the DNS results, although the higher ones (modes greater than the cut-off mode M)

are affected adversely. Clearly, this decision for selecting the amplitude does not guarantee that � will vanish
monotonically with the number of modes N , as in the original SVV method.

For flat spectra the procedure we adopted here may not be the optimum one. This was evident to some

degree for the Re ¼ 500 case we studied in the current work, where the high modes were not in good
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agreement with the DNS results. An alternative procedure in improving accuracy in this case could be

formulated by following a least-squares approach or minimizing an appropriate objective function. One

possibility is to use the weighted sum of the squared differences in the modal amplitudes, where the weights
could be the normalized POD eigenvalues. Other flow systems may require different treatment. The point

we want to emphasize, however, is that after establishing a limit cycle with the SV-POD model, additional

criteria need to be employed to improve the accuracy of the prediction.

The SVV non-linear stability theory is based on the treatment of the inviscid Burgers equation, originally

proposed by Tadmor [20] for Fourier discretization. We can justify its use in the current context only

heuristically and have been motivated by success in other applications [21,23]. However, a rigorous justi-

fication for low-dimensional models derived from Galerkin projections is currently missing, and thus we do

not have much insight into the effectiveness of SVV. The extra term appearing in Eq. (7), in addition to the
standard viscosity term, is perhaps the key but its optimum form may depend on the specific dissipative

PDE considered. For example, by perturbing the original SVV model of Tadmor in the current work we

produced a new dynamic response, with the modified system exhibiting Hopf bifurcation points unlike the

original one. Future work should address these issues, and also investigate the dissipation spectrum in

detail for larger systems with higher number of modes so that a sufficient dissipation range exists. Finally,

correcting the long-term behavior of the POD model does not imply that the model can correctly capture

the correct bifurcation dynamics of the flow. To this end, a hybrid basis consisting of snapshots taken at

both sides of the bifurcation point should be employed, see [27].
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